数学中配方的公式是:把二次项系数化为1,然后陪一次项系数一半的平方。
举例如下:
2x²+8x+5=2(x²+4x)+5
=2(x²+4x+2²)+5-8
=2(x+2)²-3
扩展资料:
配方法是指将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。这种方法常常被用到恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一。
在基本代数中,配方法是一种用来把二次多项式化为一个一次多项式的平方与一个常数的和的方法。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。
由于问题中的完全平方具有(x + y)² = x² + 2xy + y²的形式,可推出2xy = (b/a)x,因此y = b/2a。等式两边加上y² = (b/2a)²,可得:
这个表达式称为二次方程的求根公式。
在解方程时,在一元二次方程中,配方法其实就是把一元二次方程移项之后,在等号两边都加上一次项系数绝对值一半的平方。
【例】解方程:2x²+6x+6=4
分析:原方程可整理为:x²+3x+3=2,通过配方可得(x+1.5)²=1.25通过开方即可求解。
解:2x²+6x+6=4
=(x+1.5)²=1.25
x+1.5=1.25的平方根
参考资料来源:百度百科-配方法
用配方法解一元二次方程的一般步骤:
1、把原方程化为的形式;
2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;
3、方程两边同时加上一次项系数一半的平方;
4、再把方程左边配成一个完全平方式,右边化为一个常数;
5、若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解。
扩展资料:
配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有(x + y)² = x² + 2xy + y² 的形式,可推出2xy = (b/a)x,因此y = b/2a。等式两边加上y² = (b/2a)² 。
例分解因式:x²-4x-12
解:x²-4x-12=x²-4x+4-4-12
=(x-2)²-16
=(x -6)(x+2)
求抛物线的顶点坐标
【例】求抛物线y=3x²+6x-3的顶点坐标。
解:y=3(x²+2x-1)=3(x²+2x+1-1-1)=3(x+1)²-6
所以这条抛物线的顶点坐标为(-1,-6)
参考资料来源:百度百科——配方法
若x²+kx+n,则配中间项系数一半的平方.
举例说明 x²+4x+16
首先,配中间项系数一半的平方也就是2²=4.
原式=x²+4x+4+(16-4)=(x+2)²+12
1.二元一次方程配方公式:ax2+bx+c=0。
2.含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。
3.所有二元一次方程都可化为ax+by+c=0(a、b≠0)的一般式和ax+by=c(a、b≠0)的标准式,否则不为二元一次方程。
4.方程(equation)是指含有未知数的等式。
5.是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。
6.求方程的解的过程称为“解方程”。
配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。
最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。
配方法使用的最基本的配方依据是二项完全平方公式(a+b) =a +2ab+b ,将这个公式灵活运用,可得到各种基本配方形式,如:
a +b =(a+b) -2ab=(a-b) +2ab;
a +ab+b =(a+b) -ab=(a-b) +3ab=(a+ ) +( b) ;
a +b +c +ab+bc+ca= [(a+b) +(b+c) +(c+a) ]
a +b +c =(a+b+c) -2(ab+bc+ca)=(a+b-c) -2(ab-bc-ca)=…
结合其它数学知识和性质,相应有另外的一些配方形式,如:
1+sin2α=1+2sinαcosα=(sinα+cosα) ;
x + =(x+ ) -2=(x- ) +2 ;…… 等等。
(x-y-z)^2=x^2+y^2+z^2-2xy-2xz+2yz。
三元配方公式是(x-y-z)^2=x^2+y^2+z^2-2xy-2xz+2yz,三元二次方程是指有三个未知数,最高次数为二次的方程。一般需要三个等式才能解出。否则就是三元二次不定方程。
方程是表示两个数学式之间相等关系的一种等式,是含有未知数的等式,通常在两者之间有一等号“=”。方程不用按逆向思维思考,可直接列出等式并含有未知数。它具有多种形式,如一元一次方程、二元一次方程等。